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Abstract— We study the equilibrium quality in a multi-
commodity selfish routing game with many types of users, where
each user type experiences a different level of uncertainty.
We consider a new model of uncertainty where each user-
type over- or under-estimates their congestion costs by a
multiplicative constant. We present a variety of theoretical
results showing that when users under-estimate their costs,
the network congestion decreases at equilibrium, whereas over-
estimation of costs leads to increased equilibrium congestion.
Motivated by applications in urban transportation networks, we
perform simulations consisting of parking users and through
traffic on synthetic and realistic network topologies. In light of
the dynamic pricing policies aimed at tackling congestion, our
results indicate that while users’ perception of these prices can
significantly impact the policy’s efficacy, optimism in the face
of uncertainty leads to favorable network conditions.

I. INTRODUCTION

Multi-commodity routing networks that allocate resources

to self-interested users lie at the heart of many systems such

as communication, transportation, and power networks [1]. In

all of these systems, users are inherently heterogeneous not

only in their demands and objectives, but also in their belief

about the state of the system and how they trade-off between

time, money, and risk [2], [3]. Naturally, these private beliefs

influence each user’s decisions and as a consequence, the

total welfare of the overall system. Therefore, understanding

the effects of these heterogeneities is fundamental to char-

acterizing network state and performance.

A motivating example of a routing network, which we use

throughout this paper, is the urban transportation network.

Travelers in road networks simultaneously trade-off between

objectives such as total travel time, road taxes, parking

costs, waiting delays, walking distance and environmental

impact. At the same time, these users tend to possess varying

levels of information and heterogeneous attitudes, and there

is evidence to suggest that the routes adopted depend not

on the true costs but on how they are perceived by users.

For instance, users prefer safer routes over those with high

variance [4], seek to minimize travel time over parking

costs [5], and react adversely to per-mile road taxes [6].

Furthermore, the technological and economic incentives

employed by network operators to tackle congestion may

compound these effects by interacting with user beliefs in a

‘perverse manner’ [7]. For example, to limit the economic

loss arising from urban congestion [8], cities across the

world have introduced a number of solutions including
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road taxes [9], time-of-day-pricing, and road-side message

signs [10]. However, the dynamic nature of these incentives

(e.g., frequent price updates) and the limited availability

of information dispersal mechanisms may add to users’

uncertainties and asymmetries in beliefs. Therefore, to truly

evaluate the efficacy of such solutions, it is crucial to

understand how these changes impact the congestion level

of the system.

The effect of uncertainties on network equilibrium was

examined in a recent body of work [7], [11]. These uncer-

tainties are reflected through the beliefs of users, where each

user may perceive the network condition to be different than

the ‘true’ conditions. Current results have largely focused

on simple networks (e.g., parallel links) where a fixed per-

centage of the population is endowed with the same level of

uncertainty. Given the complexity in most practical networks,

it is natural to ask how uncertainty (i.e., user beliefs) affects

equilibria when there are many many types of users, who are

heterogeneous in their perceptions. Specifically, in this work

we answer the following two questions: (i) how do equilibria

depend on the type and level of uncertainty in networks with

a multitude of users, and (ii) when does uncertainty lead to

an improvement or degradation in equilibrium quality?

To address these questions, we turn to a multi-commodity

selfish routing framework commonly employed by many

disciplines (see, e.g., [12]–[14]). In our model, each user

seeks to route some flow along links connecting two nodes

in a network and faces congestion costs on each link. These

congestion costs are perceived differently by each user in

the network, representing the uncertainties in their beliefs. It

is well-known that even in the presence of perfect informa-

tion (every user knows the exact true cost), strategic behavior

by the users can result in considerably worse congestion

at equilibrium when compared to an optimum routing so-

lution [15]. Against this backdrop, we analyze what happens

when users have imprecise views about the congestion costs.

A surprising outcome arises: in the presence of uncertainty,

if users under-estimate the costs and select routes based

on these perceived costs, the equilibrium quality is better

compared to the full information case. Conversely, if the

users are overly conservative and over-estimate the costs,

the equilibrium quality becomes worse.

A. Contributions

We introduce the notion of type-dependent uncertainty in

multi-commodity routing networks, where the uncertainty of

users belonging to type ✓ is captured by a single parameter

r✓ > 0. Specifically, for each user of type ✓, if her true cost

on edge e is given by Ce(x) = aex+be, where x is the total



population of users on this edge, then her perceived cost is

aex+ r✓b.

We are interested in studying the quality of the equilibrium

routing as well as the socially optimal routing solution, using

social cost as a metric. Specifically, given an allocation

x where each user routes an infinitesimal amount of flow

between pre-specified nodes in the network, the social cost

of this solution is given by

C(x) =
X

e2E

xeCe(xe) (1)

where xe is the total population mass, summed over all user

types, allocated to edge e under the allocation rule x (see

Section II for formal definitions).

We consider two types of uncertainties: pessimism where

users over-estimate the costs (r✓ � 1) and optimism where

users under-estimate the costs (r✓  1), for all types ✓.

Under this model of type-based uncertainty in congestion

costs, we have the following contributions:

(a) The social cost of the equilibrium solution where all

users have the same level of uncertainty (r✓ = r for

all ✓) is always smaller than or equal to the cost of

the equilibrium solution without uncertainty when r 2

[0.5, 1] and vice-versa when r � 1.

(b) The worst-case ratio of the social cost of the equi-

librium to that of the socially optimal solution (i.e.,

the price of anarchy [15]) is
4r

2

min

4rmin��1
, where rmin =

min✓ r✓ and �  1 is the ratio of the minimum to the

maximum uncertainty over user types.

(c) In systems having users with and without uncertainty,

the routing choices adopted by the uncertain users

always results in an improvement in the costs expe-

rienced by users without uncertainty.

Under some additional model assumptions, the above results

also extend to a more general model where users possess

different uncertainties on each edge (these extensions are

covered in a longer version of this work [16]).

To validate the theoretical results, we present a number of

simulation results. We focus specifically on the application

of parking in urban transportation networks (see, e.g., Fig. 2)

and consider simple networks as well as realistic urban

network topologies with two types of users: through traffic

and parking users. We demonstrate the effects of an uncertain

parking population on equilibrium quality. We show via

simulations that optimism improves equilibrium quality while

pessimism degrades it both when uncertainty is asymmetric

across user types and when users face different levels of

uncertainty on different network edges.

B. Comparison with Other Models of Uncertainties

Our work is closely related to the extensive body of work

on risk-averse selfish routing [17], [18] and pricing tolls in

congestion networks [2], [13]. The former line of research

focuses on the well known mean-standard deviation model

where each individual user selects a path that minimizes a

linear combination of their expected travel time and standard

deviation. While such an objective is desirable from a central

planner’s perspective, experimental studies suggest that in-

dividuals tend to employ simpler heuristics when faced with

uncertainty [19]. Motivated by this, we adopt a multiplicative

model of uncertainty similar to [20], [21].

In regards to the latter line of work, the literature on

computing tolls for heterogeneous users is driven by the

need to implement the optimum routing by adjusting the

toll amount, which is often interpreted as the time–money

tradeoff, on each edge as a function of the congestion. We, on

the other hand, assume that the user beliefs are independent

of the congestion in the network, and aim for a more nuanced

understanding of the dependence of network congestion on

the level of uncertainty. Moreover, we study the effect of both

optimistic and pessimistic attitudes, whereas much of the

existing work focuses strictly on pessimistic user behavior.

C. Organization

The rest of the paper is structured as follows. In Section II,

we formally introduce our model followed by our main

results in Section III. Section IV presents our simulation

results on urban transportation networks with parking and

routing users who face different levels of uncertainty. Finally,

we conclude with some discussion and comments on future

directions in Section V.

II. MODEL AND PRELIMINARIES

We consider a non-atomic, multi-commodity selfish rout-

ing game with multiple types of users. Specifically, we

consider a network represented as G = (V, E) where V is

the set of nodes and E is the set of edges. For each edge

e 2 E , we define a linear cost function

Ce(xe) = aexe + be, (2)

where xe � 0 is the total population (or flow) of users on

that edge and ae, be � 0. One can interpret Ce(·) as the true

cost or expected congestion felt by the users on this edge.

However, due to uncertainty, users may perceive the cost on

each edge e 2 E to be different from its true cost.

To capture that users may have different perceived un-

certainties, we introduce the notion of type. Specifically, we

consider a finite set of user types T , where each type ✓ 2 T
is uniquely defined by the following tuple (s✓, t✓, µ✓, r✓).
We assume that µ✓ > 0 denotes the total population of users

belonging to type ✓ such that each of these infinitesimal users

seeks to route some flow from its source node s✓ 2 V to the

destination node t✓ 2 V . Moreover, the parameter r✓ > 0
captures the beliefs or uncertainties associated with users of

type ✓ and affects the edge cost in the following way: users

of type ✓ perceive the cost of edge e 2 E to be

Ĉ✓
e
(x) = aex+ r✓be. (3)

If we interpret be as a price or a tax, then r✓ < 1 denotes the

case where users of type ✓ under-estimate prices compared

to their actual value and r✓ > 1 captures situations where

users over-estimate prices or view them adversely compared

to their other costs.
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Fig. 1: An example of a two-commodity routing game,

where all traffic originates at node s. Users of type ✓1 select

a route between nodes s and t✓1 , whereas users of type ✓2
route traffic between s and t✓2 .

Let P✓ denote the set of all s✓–t✓ paths in G where s✓
is the source and t✓ is the destination. A path p 2 P✓ is a

seqence of edges connecting s✓ to t✓.

Formally, let x✓
p
2 R be the total flow routed by users of

type ✓ on path p 2 P✓. We define a feasible flow to be a

flow x = (x✓
p
)✓2T ,p2Pθ

2 R
|T |·|Pθ| such that for all ✓ 2 T ,

P

p2Pθ
x✓
p
= µ✓, and x✓

p
� 0 for all paths p 2 P✓. Path

flows are related to edge flows. Indeed, let x✓
e
2 R be the

flow on edge e of users of type ✓. The edge and path flow

for users of type ✓ are related by

x✓
e
=

P

p2Pθ,p3e
x✓
p

(4)

Define the total flow on edge e to be xe =
P

✓2T x✓
e
. Then,

in this notation, we can write the path cost in terms of edge

flow; indeed for any path p in the graph,

Cp(x) =
P

e2p
Ce(xe) =

P

e2p
(aexe + be). (5)

Similarly, the perceived path costs are given by

Ĉ✓
p
(x) =

P

e2p
Ĉ✓

e
(xe) =

P

e2p
aexe + r✓be. (6)

Users of type ✓ choose a feasible flow that minimizes their

perceived cost under the allocation x
✓:

P

p2Pθ
x✓
p
Ĉ✓

p
(x). (7)

We define a game instance as the tuple

G = {(V, E), T , (s✓, t✓, µ✓, r✓)✓2T , (Ce)e2E}. (8)

In the full version of this work [16], we generalize this

model to consider situations where users belonging to a given

type experience different uncertainties on each of the edges.

A. Illustrative Example

A simple example of a multi-commodity routing model

that captures the conflict between two types of users is de-

picted in Fig. 1. Such a situation could occur in transportation

networks, for instance, when ✓1 represents travelers who

choose between public transportation (path {e2, e3}) and

simply walking to their final destination (edge e1). On the

other hand, ✓2 could denote drivers with personal vehicles

(paths {e2, e4} and {e5}). It is conceivable that users of

type ✓1 are averse to (or even favor) walking long distances

and therefore r✓2 6= 1. Clearly, the biases that are intrinsic

to users of type ✓1 affect the number of these users on

edge e2 and hence, the congestion experienced by users of

type ✓2. We explore these effects further via more nuanced

transportation related examples in Section IV.

B. Nash Equilibrium Concept and its Efficiency

We assume that the users in the system are self-interested

and route their flow with the goal of minimizing their

individual cost. Therefore, the solution concept of interest in

such a setting is that of a Nash equilibrium, where each user

type routes their flow on minimum cost paths with respect

to their perceived cost functions and the actions of the other

users.

Definition 2.1 (Nash Equilibrium): Given a game in-

stance G, a feasible flow x is said to be a Nash equilibrium

if for every ✓ 2 T , for all p 2 P✓ with positive flow, x✓
p
> 0,

Ĉ✓
p
(x)  Ĉ✓

p0(x), 8 p0 2 P✓. (9)

For the rest of this work, we will assume that all the flows

considered are feasible.

Remark 1 (User Beliefs): In order to employ the classical

notion of Nash equilibrium, we assume that all uncertainty

levels are known by all of the users. That is, a user of type

✓ knows the values (r✓0be)e2E for all ✓0 2 T . While a

user knowing (r✓be)e2E within its own type ✓ may not be

unreasonable, full knowledge of (r✓be)e2E for all ✓ 2 T is

a strong assumption.

This being said, for the types of games we consider, a

number of myopic learning rules1 converge to Nash equilib-

ria independent of the beliefs held by users regarding other

user types. (see, e.g., [22] and references therein).

C. Social Cost and Price of Anarchy

We measure the quality of a solution using its social cost,

which is defined to be the aggregate (true) cost incurred by

all of the users in the system. Formally, the social cost of a

flow x is given by

C(x) =
P

e2E Ce(xe)xe. (10)

The social cost is only measured with respect to the true

congestion costs and does not reflect users’ beliefs.

To capture inefficiencies, we leverage the well-studied

notion of the price of anarchy which is the ratio of the

social cost of the worst-case Nash equilibrium to that of the

socially optimal solution [14]. Formally, given an instance

G of a multi-commodity routing game belonging to some

class C (a class refers to a set of instances that usually share

some property) suppose that x⇤

G is the flow that minimizes

the social cost C(x) and that x̃G is the Nash equilibrium for

the given instance, then the price of anarchy is:

Definition 2.2 (Price of Anarchy): Given a class of in-

stances C, the price of anarchy for this class is

max
G2C

C(x̃G)

C(x⇤

G)
. (11)

1By myopic learning rules, we mean rules for iterated play that require
each player to have minimal-to-no knowledge of other players’ cost func-
tions and/or strategies.



Of course, the price of anarchy is always greater than or

equal to one.

III. MAIN RESULTS

The first step to analyzing the multi-commodity game is

to characterize the Nash equilibria. If the games fall into

the general class of potential games, then the equilibria

have “nice properties” in terms of existence, uniqueness, and

computability [22]. General multi-commodity, selfish routing

games with heterogeneous users, however, do not belong to

the class of potential games unless certain assumptions on

the edge cost structure are met [12].

Due to the fact that we have linear latencies for each type

and the type-dependent uncertainty appears on the be terms

for each edge, all game instances of the form we consider

admit a potential function and hence, there always exists a

Nash equilibrium [12].

Proposition 3.1: A feasible flow x is a Nash equilibrium

for a given instance G of a multi-commodity routing game

if and only if it minimizes the following potential function:

Φr(x) =
P

e2E

⇣

aex
2

e

2
+ be

P

✓2T r✓x
✓
e

⌘

(12)

Moreover, for any two minimizers x,x0, Ce(xe) = Ce(x
0

e
)

for every edge e 2 E .

The proof of the proposition follows from standard argu-

ments pertaining to the minimizer of a convex function and

from the definition of Nash equilibrium as in (9) and we

refer the reader to [22] for more details. The second part

of the proposition indicates that the equilibria are essentially

unique as the cost on every edge is the same across solutions.

With the above proposition in hand, we now derive three

main results on (i) the impact of uncertainty on social cost,

(ii) the impact of uncertainty on players, and (iii) bounds on

the price of anarchy.

A. Effect of Uncertainty on Equilibrium Quality

Our first main result identifies a special case of the

general multi-commodity game for which uncertainty helps

improve equilibrium quality—i.e. decreases the social cost—

whenever users under-estimate costs for every instance and

vice-versa when they over-estimate costs. For a given in-

stance of the multi-commodity routing game, we say that

the users are optimistic if r✓  1 for all ✓ 2 T . Similarly,

the users are pessimistic if r✓ � 1 for all user types.

Given an instance G of the multi-commodity routing game,

we define G1 to be the corresponding game instance with no

uncertainty—that is, G1 has the same graph, cost functions,

and user types as G, yet r✓ = 1 for all ✓ 2 T .

Theorem 3.2: Consider any given instance G of the multi-

commodity routing game with Nash equilibrium x̃ and cor-

responding game instance G1, having no uncertainty, whose

Nash equilibrium is x
1. Suppose all users experience the

same uncertainty, where r✓ = r for all ✓ 2 T . Then, the

following hold:

1) C(x̃)  C(x1) if 0.5  r  1.

2) C(x̃) � C(x1) if r � 1.

We provide the proof in Appendix A. The following corollary

identifies a specific level of (optimistic) uncertainty at which

the equilibrium solution is actually optimal.

Corollary 3.3: Given an instance G of the multi-

commodity routing game, let x̃ denote its Nash equilibrium

and x
⇤ denote the socially optimal flow. If r✓ = 0.5 for all

✓ 2 T , then C(x̃) = C(x⇤)—i.e. the equilibrium is socially

optimal.

We address the issue of heterogeneous uncertainties across

user types in [16]. Specifically, under some additional model

assumptions, we can prove that (mild) optimism helps

lower equilibrium costs and pessimism increases equilibrium

congestion for a more general model where users possess

different uncertainties on each edge.

B. Impact of Uncertain Users on Those without Uncertainty

Now that we have a better understanding of how un-

certainty affects the performance of the entire system as

measured by the social cost, we now tackle a more nuanced

question: in systems where only some users are uncertain,

how does their behavior impact the social cost of the

users who do not have uncertainty? This question is of

considerable interest in a number of settings, e.g., in urban

transportation networks, where it is believed that [23]–[26]

inefficient behavior by the parking users (such as cruising or

searching for parking spots) can often cascade into increased

congestion for other drivers leading to a detrimental effect

on the overall congestion cost.

To answer this question, we restrict our attention to a two-

commodity routing game G, where both types of users seek

to route their flow from a common source node s to sink node

t. Moreover, we assume that for the first type ✓1, r✓1 = 1.

For the second type ✓2, r✓2 is not necessarily 1. We refer

to this as the two-commodity game having users with and

without uncertainty.

We now define some additional notation. Suppose that

x denotes a feasible flow for a given instance of the two-

commodity game with uncertain and full information users,

we use C✓1(x) =
P

e2E Ce(xe)x
✓1
e

to denote the aggregate

cost of users of type ✓1. Finally, we also restrict our focus

to series-parallel networks, which denote a popular class of

network topologies in the literature pertaining to network

routing [27], [28]. Informally, a graph is said to be series-

parallel if it does not contain an embedded Wheatstone

network or equivalently if, in the undirected version of this

graph two routes never pass through any edge in opposite

directions. The reader is referred to [28] for a more rigorous

definition.

We present a surprising result in Theorem 3.4: the behavior

under uncertainty by one type of users always decreases the

congestion costs of other types of users who do not face

any uncertainty. This result holds for both optimistic and

pessimistic behavior.

Theorem 3.4: Given an instance G of the two-commodity

game having users with and without uncertainty such that the

graph G is series-parallel, let G1 denote a modified version

of this instance with no uncertainty (i.e. r✓1 = r✓2 = 1). Let



x̃ and x
1 denote the Nash equilibrium for the two instances,

respectively. Then,

C✓1(x̃)  C✓1(x1). (13)

We provide the proof of the above theorem in Appendix B.

C. Price of Anarchy Under Uncertainty

In Theorem 3.2, we showed that the equilibrium cost

under uncertainty decreases (resp. increases) when users are

optimistic (resp. pessimistic) and all user types have the same

level of uncertainty. This naturally raises the question of

quantifying the improvement (or degradation in equilibrium)

and whether uncertainty helps when the uncertainty parame-

ter can differ between user types. In the following theorem,

we address both of these questions by providing price of

anarchy bounds as a function of the minimum uncertainty in

the system and �, which is the ratio between the minimum

and maximum uncertainty among user types.

Let rmin = min✓2T r✓ and � = minθ rθ

maxθ rθ
.

Theorem 3.5: If 1 < 4rmin�, the price of anarchy for

multi-commodity routing games is given by

4r
2

min

4rmin��1
. (14)

We provide the proof of the above theorem in [16].

The above result broadly validates our message that uncer-

tainty helps equilibria when users under-estimate their costs

and hurts equilibrium when users over-estimate their costs.

To understand why, let us consider the case of � = 1—

i.e. the uncertainty is the same across user types. We already

know that in the absence of uncertainty, the price of anarchy

of multi-commodity routing games with linear costs is given

by 4

3
[15]; this can also be seen by substituting rmin = 1,

� = 1 in (11). We observe that the price of anarchy is strictly

smaller than 4

3
for rmin < 1 and reaches the optimum value

of one at rmin = 0.5 thereby confirming Corollary 3.3.

Similarly, as rmin increases from one, the price of anarchy

also increases nearly linearly. In fact, our price of anarchy

result goes one step beyond Theorem 3.2 as it provides

guarantees even when different user types have different

uncertainty levels. For example, when rmin = 0.6, and

� = 0.9—i.e. max✓ r✓ ⇡ 0.67—the price of anarchy

is 1.24, which is still better than the price of anarchy

without uncertainty. Furthermore, the price of anarchy result

reveals a surprising dichotomy: as long as rmin < 1 and

� is not too large, for any given instance G of the multi-

commodity routing game, either the equilibrium quality is

already good or uncertainty helps lower congestion by a

significant amount.

IV. NUMERICAL EXAMPLES

In this section, we present our main simulation results on

both stylistic as well as realistic urban network topologies

comprising of two types of users (two commodities)—

i.e. through traffic, parking users (types ✓1, ✓2, respectively).

We consider a more general model of uncertainty for our sim-

ulations, where the parking users have different uncertainty

levels on different parts of the network and the through traffic

does not suffer from uncertainty at all. We vary the level of

o1

b

s t

t2

Garage

o2

On-Street Parking

Fig. 2: A special case of our general multi-commodity

network with two types of users- parking users and through

traffic. All of the network traffic originates at the source

node s. Users belonging to the through traffic simply select a

(minimum-cost) path from s to t and incur only the latencies

on each link. The parking users select between one of two

parking structures: on-street parking (indicated in green) with

additional circling costs and off-street (e.g., parking garage).

uncertainty faced by the parking users, and observe its effect

on the social cost at equilibrium.

Despite the generality of the model considered here—

different user types have different beliefs and their level of

uncertainty depends on the edge under consideration—our

simulations validate the theoretical results presented in the

previous section.

A. Effect of Uncertainty on On-Street vs Garage Parking

Inspired by work in [23] which provides a framework

for integrating parking into a classical routing game that

abstracts route choices in urban networks, we begin with

a somewhat stylized example of an urban network, depicted

and described in Fig. 2. The users looking for a parking spot

are faced with two options: (i) on-street parking which, as

in reality, is cheaper but leads to larger wait times due to

cruising in search of parking; (ii) an off-street or a private

garage option that is much easier to access (in terms of wait

times) at the expense of a higher price.

To understand the costs faced by the parking users (type

✓2), let Eos be the set of edges in the on-street parking

structure (the green edges in Fig. 2). For parking users

that select the on-street parking option, the cost on edges

e 2 Eos are of the form C✓2
e
(xe) = C✓2

e,`(xe) + C✓2
e,os

(xe)

where C✓2
e,`(xe) = aexe + be is the travel latency and

C✓2
e,os

(xe) = ae,osx+ be,os is the parking cost.

Fig. 2 easily transforms into a two-commodity network

by creating a fake edge ẽ from node o1 to t2, having the

accumulated parking costs from edges Eos—i.e. Cẽ(xẽ) =
P

e2Eos

C✓2
e,os

(xe) Then the costs on edges in Eos are re-

defined to only contain the travel latency cost, and this is

the same for both types of users: for e 2 Eos, C✓1
e
(xe) =

C✓2
e
(xe) = aexe+be. For the off-street parking structure, the

edge, say e0, from o2 to t2 has cost Ce0(xe0) = apgxe0 +bpg .

The uncertainty is only faced by the parking users (and

only on ẽ, e0) who perceive the cost of the two parking
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APPENDIX

A. Proof of Theorem 3.2

Proof: Let Φr(x) denote the potential function for

the instance G and Φ1(x) denote the potential function

for G1 where Φ1 is given in (12) with r✓ = 1 for all

✓. By definition of the potential function, we know that

Φr(x̃) � Φr(x
1)  0 and Φ1(x

1) � Φ1(x̃)  0. Adding

these two inequalities and rearranging the terms, we get

that Φr(x̃) � Φ1(x̃) � (Φr(x
1) � Φ1(x

1))  0. Applying

the definition of the potential function (Equation 14) and

expanding the terms, the ae terms cancel out giving us:
X

e2E

be
X

✓2T

(r✓ � 1)∆x✓
e
 0, (15)

where ∆x✓
e
= x̃✓

e
� x1,✓

e
, and ∆xe = x̃e � x1

e
. Recall that

x1,✓
e

denotes the total flow on edge e by users of type ✓ in

the solution x
1.

By the conditions of the theorem, we know that r✓ = r

for all ✓ 2 T . Substituting this into (15) and using the fact

that
P

✓ ∆x✓
e
= ∆xe for all edges, we get:

(r � 1)
X

e2E

be∆xe  0. (16)

Hence,

1) When r 2 [0.5, 1), we have that (r � 1) < 0, and

therefore,
P

e2E be∆xe � 0.

2) When r > 1, we have that (r� 1) > 0, and therefore,
P

e2E be∆xe  0.

We can finish the proof by consider each of these cases.

Case I: r 2 [0.5, 1): Applying Lemma 3.2 [16] to the

instance G with x = x
1 and r✓ = r for all ✓ 2 T , we

obtain:

C(x̃)� C(x1)  (1� 2r)
X

e2E

be∆xe. (17)

We claim that when r 2 [0.5, 1), the right-hand side of (17)

is lesser than or equal to zero. This is not particularly hard to

deduce owing to the fact that (1�2r) < 0 in the given range

and that
P

e2E be∆xe � 0 as deduced from (16). Therefore,

C(x̃) � C(x1)  0, which proves the first of the claim that

uncertainty with a limited amount of optimism helps lower

equilibrium costs.

Case II: r > 1: Applying Lemma 3.2 of [16] to the instance

G1 with x = x̃, and using the fact that ∆xe = x̃e � x1

e
, we

have:

C(x1)� C(x̃)  (2r � 1)
X

e2E

be∆xe. (18)

Once again when r � 1, we know that 2r � 1 > 0 and

from (9), we can deduce that
P

e2E be∆xe  0 in the given

range. This completes the proof that uncertainty coupled with

pessimism hurts equilibrium quality.

B. Proof of Theorem 3.4

Proof: Consider the flows x
1 and x̃. Applying a result

for series-parallel graphs [28, Lemma 3], we get that there

exists a path p with x1

p
> 0 such that for all e 2 p, x̃e  x1

e
.

We can now bound both C✓1(x̃) and C✓1(x1) in terms of

the cost of the path p. Specifically note that in the solution

x
1, the path p has non-zero flow on it, we get that C✓1(x1) =

`✓1
P

e2p
Ce(x

1

e
).

However, in the solution x̃, we know that every user of

type ✓1 is using a minimum cost path with respect to the

true costs and therefore, the cost of any path used by users

of type ✓1 is at least that of the path p. Formally,

C✓1(x̃)  `✓1

X

e2p

Ce(x̃e)  `✓1

X

e2p

Ce(x
1

e
). (19)

The final inequality follows from the monotonicity of the cost

functions and the fact that x̃e  x1

e
for all e 2 p. Therefore,

we conclude that C✓1(x̃)  C✓1(x1).


